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Abstract

This paper proposes a method to control vibration of arbitrary structures with spatially weighted objectives. Multiple
discrete structural sensors are distributed over a structure and a spatial interpolation method is used to obtain the estimate
of vibration at any points over the structure. The method thus does not require a priori information about the dynamic
model of the structure. From the vibration information provided by structural sensors, spatial signals can then be
obtained, representing the spatially weighted vibration of the entire structure. A condensation procedure allows the
reduction of the required number of control input channels for active control purposes. A numerical case study of a flexible
plate demonstrated that the proposed method can be used for minimising spatial vibration or for achieving a desired
spatial vibration profile of a structure.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Research into structural vibration control still receives a significant interest among researchers, partly due
to the growing use of light-weight and flexible structures in many engineering applications. One challenging
aspect of this research is that flexible structures are distributed systems, in which vibration at one structural
location is related to vibration at other locations. This implies that controlling vibration at a few locations do
not necessarily correspond to controlling the rest of structure. It is thus important to consider the overall
spatial nature of structural vibration if one wants to control the vibration effectively.

For active structural vibration control, numerous control methods have been proposed such as the ones that
utilise direct vibration information from one or more structural sensors, using various direct feedback control
methods [1-3]. Many researchers have also proposed various spatial sensors for sensing vibration from a
structure, using discrete or continuous sensors. The use of continuous vibration sensors such as shaped
piezoelectric films [4] in particular polyvinylidene fluoride (PVDF) films, has been investigated by many
researchers. The sensor can be shaped for measuring particular vibration or sound radiation characteristics
that are of interest. For instance, such sensors have been used for controlling structural vibration [5] or sound
radiation from vibrating structures using spatial sensors with porous electrodes [6], narrow strip sensors [7],
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transformed modal velocity sensors [§8], volume displacement sensors [9] or quadratically weighted strain
integrating sensors [10,11]. In these cases, accurate a priori information, such as the mode shapes and
boundary conditions, may be needed to obtain precise sensor shapes for avoiding bias in the sensing. For some
sensors, special electrodes also need to be manufactured, particularly when the sensors cover most of the
structure [6]. The work presented here, however, attempts to develop spatial sensors (using discrete sensors)
which do not depend on accurate a priori structural information that is generally needed if continuous sensors
are used. This means that such spatial sensors can readily be used for structures with different vibration
characteristics and boundary conditions.

The use of multiple discrete sensors in structural vibration control has also been common. Such sensors can
be distributed over the structure to obtain a global vibration reduction, for instance by developing control
systems that minimise error signals obtained from the sensors [12]. Meirovitch et al. [13,14] also proposed the
use of multiple sensors via independent modal space control method [15] by extracting modal coordinates
from sensor measurements, thus creating a modal filter which requires a priori information about the
structure’s modal properties. Other filtering methods are used for structural acoustic control. Elliot and
Johnson [16] and Burgan et al. [17] both used velocity information from multiple discrete sensors to,
respectively, create elemental radiators and an array of monopole sources for predicting the sound radiation
power.

The work mentioned previously mainly deals with the control of some types of global structural vibration or
sound radiation. In some cases, however, it is beneficial to control vibration at specific structural regions more
than other regions. Other regions might be more prone to structural vibration or the vibration at certain
regions might be more detrimental to the structural performance. For controlling vibration in certain spatial
structural regions, some researchers have proposed the optimal 5, and # , control with spatially weighted
objectives [18-20]. However, the control methods still rely on dynamic models of structures, which may not
always be available in some applications.

As a result, the work in this paper proposes a different method for controlling spatial vibration using
multiple structural sensors which allows specific structural regions to be continuously weighted more than the
others. Spatial interpolations are used to estimate the spatial vibration profile of a structure. Although spatial
interpolations have been used in other work [13,14,21,22], the previous work still requires a priori structural
information such as structural mass/stiffness or modal properties. In contrast, the proposed method only uses
vibration information directly from sensors without requiring a priori mass/stiffness or modal information.
The method can thus provide a practical means of controlling structural vibration since it is less dependent on
a priori structural information.

An example of specific applications of the control methods is for controlling the near-field sound/noise
radiation in a vehicle cabin. Since the near-field sound radiation is heavily correlated with the velocity
distribution of the radiating panel, the control method can be used to minimise the velocity profile of the panel
so that the noise radiation can be minimised. An application for controlling sound radiation in particular far-
field regions can also be targeted using the method.

2. Vibration sensing approach via spatial signals

Consider an arbitrary flexible structure whose a priori information is not available except for its geometric
shape (see Fig. 1). In this situation it is not desirable to use a model-based control since the dynamic model of
the plant is unknown. Even when a model is available, changes in dynamics occurring during control
implementation in some instances might lead to performance reduction or even instability to the system.
Therefore, the objective of this work is to control the spatial vibration of an arbitrary structure whose dynamic
model is practically unknown. The spatial vibration is of particular interest here since it can be desirable to
consider the vibration of the entire structure, and not just some points or regions on the structure.

2.1. Vibration profile estimation from a vibrating structure

To control spatial vibration of a structure effectively, it is necessary to estimate the structural vibration
profile. The vibration profile of a structure can be estimated via spatial interpolation functions, using a method
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N structural sensors

structure

m™ element

N, nodes at boundaries

X

Fig. 1. A structure with N structural discrete sensors with N, nodes at structural boundaries. Vibration measured at a single sensor at
location (x;, ;) is v; and the mth element, whose local coordinates are (xt™, M) are constructed from four nodes.

similar to the finite element method commonly used for numerical analysis of structures (see Refs. [23,24] for
example). The principle of using spatial interpolations have also been discussed in other work such as in Refs.
[13,21]. However, the work presented here also utilises information from structural boundary conditions for
obtaining the vibration profile of the entire structure.

Consider the case where N structural discrete sensors are distributed over the structure, in which the ith
sensor measures vibration v; at a particular location (x;, y;), considering a two-dimensional system (see Fig. 1).
Vibration information from N sensors can then be spatially interpolated from ‘elements’ generated by N nodes
to generate a spatial vibration profile. In addition to vibration information from structural sensors, knowledge
of structural boundary conditions can also improve the vibration profiling on regions close to structural
boundaries. In the case where parts of structural boundaries have minimal vibrations, additional nodes/points
can be included to provide additional ‘elements’ near the boundaries. In the following derivations, it is
assumed that there are N, locations/nodes/points at structural boundaries where vibrations are expected to be
practically minimal.

Suppose there are M number of elements constructed from N 4+ N, nodes over the structure, where N and
N, nodes are contributed by N structural sensors and N, nodes at boundaries, respectively. Consider the mth
element, whose local coordinates are (x", y™) as shown in Fig. 1. In this case, the vibration level v{7” at any
location (x™, ) can be described by sensor measurements at / associated sensors for this particular mth
element (for example, / = 4 in Fig. 1). In its most general form, vfgf) e R will be a vector with k continuous
vibration signals in terms of displacement, velocity, strain, or other vibration measures that can be derived
from sensor signals v:

v;n;) (x(m)’ y(m)’ l) —H (x(m)’ y(m)) V(m)(l), (1 )

where v'" consists of a group of / sensor measurements v; associated with the mth element, and H(x"", y(™) is
a k x [ interpolation function matrix. Each set of local coordinates for the mth element can be transformed to
the global coordinates (x, y) by using a linear transformation matrix A™ e R’*V+No) 5o the vibration signals
in global coordinates v € RV*Y*) can be related to the local coordinates:

V(1) = APy (7). ()
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Incorporating this coordinate transformation matrix for each element and substituting it into Eq. (1), the
vibration at any point over the structure can be estimated with

V(0. 0) = H(x™, ) Av(r)

where v consists of sensor signals v; and the nodes at boundaries with minimal vibrations. From Eq. (3), the
structural vibration profile can be estimated from sensor measurements over the structure. Having estimated
the vibration profile, the next task is to extract ‘spatial signals’ from the sensor measurements for active
control purpose as discussed in the followings.

2.2. Choice of spatial interpolation functions

It is noted in Eq. (1), that the vibration profile is estimated by using spatial interpolation functions.
Consequently, the control performance will be affected by the accuracy of the estimation. The choice of these
functions depends on the types of structural sensors used, e.g. translational or angular vibration sensors. The
lowest-order interpolation function is a linear function where the vibration profile between two structural
sensors is linearly interpolated as shown in Fig. 2(a) for a one-dimensional case. Here, vibration levels are
measured at the two ends of each structural element, which are used to interpolate the vibration level in
between.

It is clear that by increasing the number of sensors distributed across the structure, a more accurate
vibration profile interpolation can be achieved. However, there may be cases where it is not practically feasible
to place sensors at such locations. For example, structural regions that are difficult to access physically or
regions that requires ‘clean’ surfaces for aesthetic or performance reasons. In this case, multi-axis vibration
sensors can be used to obtain an accurate interpolation without requiring sensors to be placed at some
locations. For this purpose, micro electro mechanical system (MEMS) sensor technology has been widely
available for years with multi-axis vibration sensing capability. These MEMS sensors such the ones from
Analog Devices are continuously being improved which results in decreasing sensor size, operational power
and price.

MEMS sensors can be utilised for measuring a range of translational and angular vibrations that can be
used in conjunction with a higher-order polynomial for interpolating the vibration profile. Fig. 2(b) illustrates
a higher-order interpolation function used when translational and angular vibration sensors are located at the
two ends of the element, allowing a more accurate interpolation of the vibration profile than that of the linear
interpolation.

The spatial interpolation functions need to be chosen such that at the location of each sensor, the estimated
vibration profile v in Eq. (1) must converge to the vibration level measured by that particular sensor.

Xy
Suppose that a particular sensor is located at (x(lm), y(lm)) at the mth element, then the interpolation functions

_— vibration levels measured by sensors
vibration levels measured by sensors . '
actual :

actual X ]
AEHA % ( > profile ';

profile

. R 3
mterpolated interpolated T 7
profile elemental length profile clemental length

@ h)

Fig. 2. Interpolation functions for estimating the vibration profile of a structure: (a) linear interpolation; (b) cubic interpolation.
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must be chosen such that:
VG ", 1) = HOE™ V0
=" @), @)
where v(lm) consists of the vibration levels measured by sensors located at (x(lm), y(lm)).

A particular approach that can be used for interpolations is to assume separable interpolation function with
respect to x and y coordinates:

H( ) = H, (3B, 0, ©

where H, (x™) and H, (»™) are the spatial interpolation matrices for x and y coordinates, respectively.
For example, suppose that one is interested to a scalar velocity profile over a structure, i.e. Uf\f;” € R (Eq. (1)).

Consider the linear interpolation with respect to one of the coordinates, similar to the one shown in Fig. 2.

When a transverse velocity sensor is used at each node, a linear interpolation function can be used so that the

velocity profile at y™ = 0 is
] [oy(2)
(m) ( (m) _ _ X X
Uyy (x 0, t) - ll hgcm) /1;"”1 [Uz(l)‘| ’ ©

where v; and v, are the velocity levels measured at the two sensors, while x and h;’” are the elemental x
coordinate and length, respectively.

When a transverse velocity sensor and an angular velocity sensor are used for each node, the Hermite cubic
interpolation function can be used instead so that the velocity profile at y™ = 0 is now:

| 3<>+2<>
hiM) hirn)
2 3
(m) (m) (m)
m ) (X 5[ X X ui(t
hx (h(m)> 2 <h(m)> + (h(m)> l( )
X X X v2(2)
X (x('") ? NG : v3(0) |
w) e o0
2 3
o _<x(m)> + (&)
x
hgcm) hg(m)

where v; and v3 are the linear velocity levels measured at the two linear sensors, while v, and v4 are the angular
velocity levels measured at the two angular sensors.

1T

vfx’;) (x(m), 0, t) = (7

2.3. Spatial signals

Consider the case when controlling vibration at some regions over a structure are more desirable than other
regions. In this case, it can be useful to consider a spatially weighted vibration control approach so important
regions can be emphasised accordingly. Further, in some applications, it might also be useful to force the
vibration profile of an arbitrary structure to a desired spatial vibration profile. For example, a desired spatial
vibration profile of a structure might be controlled to improve its aerodynamic performance. For this purpose,
it is convenient to introduce ‘spatial signals’ to obtain this desired spatially weighted objectives. These spatial
signals can be incorporated with standard active control methods such as various adaptive control methods
[12] for structural vibration control.

Next, consider a general case in which a desired spatial vibration profile is described by fy,(x,,?).
A real symmetric spatial weighting matrix W(x,y) is introduced to emphasise structural regions that
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are more important to be controlled. Here, W(x, y) >0 for all locations of points (x, y) in a structural region of
interest R.
In this work, the following spatial error function e(x, y, 7) is introduced:

e(x,y, 1) = Vy(x,y,0) = £,(x, 3, 1), ®)

where vy, is the spatial vibration profile of the structure.
The following objective/cost function J(¢) is now proposed:

J(1) = / e(x, y, )"W(x, y)e(x, v, 1) dR
R
= A (ny(x: Vs t) - fxy(x: s t))TW(x’ y)(ny(xs Vs t) - fxy(xr Vs t)) dR
— V()T / M(x,)TW(x, y)M(x, ) dRV(D) — ¥(1)" / M(x, )"
R R
xW(x, y)f(x,y,t)dR — / f(x,y, t)TW(x, Y)M(x, y) dRv(¢)
R

+ / f(x,y, )" W(x, y)f(x, y, ) dR, 9)
R

where (F)' represents the transpose of a matrix F and R is again the region of the structure. It can be shown
that the cost function can be represented as

J(t) = (v(t) = V() "A(V(t) — V(1)) + (1), (10)
with
V() = A~ 'b(2) (11)

and

A= /R M(x, 7)"W(x, ))M(x, ) R,
b(1) = /R M(x, ) "W(r )f(x, v, 1) dR,

o(f) = /R f(x, v, )" W(x, p)f(x, y, ) dR — v°(1)Tb(7). (12)

Note that W(x,y) is Hermitian, so A can be shown to be Hermitian. In general, the term
M(x, y) "'W(x, »)M(x, ) =0 for every point (x,y) in region R. Since the term is integrated over the entire
region R, it can be shown that A is typically positive definite, i.e. A>0. This implies that A is non-singular and
v°(¢) can be obtained from Eq. (11).

Now, matrix A is real and symmetric since it is Hermitian, and it can be decomposed into:

A=Q) Q. (13)

Since there are N, nodes that are constrained at structural boundaries, A and b(¢) can be condensed by
removing the appropriate rows and columns that correspond to the associated nodes. This condensation
reduces the dimensions of A and b(¢) from N + N, to N.
Incorporating Eq. (13), the cost function J in Eq. (10) can then be simply represented as
J(1) = (v(1) = v (1)) QL Qo (V(1) = v (1) + (1)
= (Vap(1) = V3 (1) (vsp(1) = ¥, (1)) + (1)
= J (1) + (1), (14)
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where J is as defined above and

Vsp(t) = Qspv([)a

VI (1) = Qv (1) = Qi A'b(0). (15)

Hence, vy, is a spatial signal representing the spatially weighted vibration over the entire structure, whereas v¢
is a spatial signal representing the desired spatial vibration profile. It can be observed that ¢(¢) in Eq. (14) is not
affected by the level of structural vibration so it is sufficient to use cost function J instead (as described in
Eq. (14)) in cost function minimisation for active control.

The important implication of describing the cost function via spatial signals vy, is that a simple
sensing procedure can be obtained by filtering the sensor signals with Qg, as in Eq. (15). This method
essentially filters the signals from structural sensors to produce a spatial signal that takes into account a
spatially weighted objective. This spatial signal vy, can be subtracted by the desired spatial vibration profile v,
(see Eq. (14)), and can be regarded as the error signals whose energy J is to be minimised. A standard
active control algorithm can then be conveniently implemented into the system by using these spatial
error signals.

2.4. Choice of spatial weighting functions

As previously mentioned, a real symmetric spatial weighting matrix W(x, y) can be used to emphasise
structural regions whose vibrations are more important to be controlled. The weighting matrix can be tailored
according to the performance requirement. For instance, consider controlling vibration displacement and
strain of a flexible structure. There may be a region in the structure where it is important to minimise
displacement vibration for functional purposes such as to improve the aerodynamic or tracking performances.
On the other hand, other regions may require more emphasis in minimising the strain to improve its fatigue
life. These performance objectives can be conveniently taken into account by spatial weighting matrix W(x, y).
A diagonal matrix, for example, can be used where its diagonal term represent a spatial weighting function for
each vibration displacement or strain:

Wl(x’y) O ]’ (16)

Wix ) = [ 0 wa(x, »)

where wi(x,y), w2(x,y)>0V (x,y) € R, representing scalar spatial weighting functions for vibration
displacement or strain, respectively, in this example. Polynomial functions in x and y can easily be used for
generating the required spatial weighting function. A full W(x, y) matrix can also be used which includes the
cross-weighting between the displacement and strain objectives.

Another example is where some structural regions tend to radiate noise more. These regions can be
specifically targeted by choosing a spatial weighting function that emphasise these regions more than other
regions.

Another advantage is that the obtained filter matrix g, in Eq. (15) is based on the spatial weighting
matrix used. This implies that vibration objectives can be changed during active control operation by
changing the filter matrix used without changing or re-locating the sensors. This makes it convenient to
achieve a range of different control objectives during the control operation without 're-touching’ the structure
and sensors.

2.5. Calculation of filter matrix Qg
In order to calculate the filter matrix g, in Eq. (13), the eigenvalue decomposition approach is used as
follows:
A=QlQ
=UvuT, (17)
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where V is a diagonal matrix containing positive real valued eigenvalues; U is the matrix containing the
associated eigenvectors and U is unitary, i.e. UUT = I. Thus,

Q, = Vv'/2uT (18)

and the spatial signals to be used for control purpose can be obtained from sensor measurements, vy, = £,V
as in Eq. (15).

2.6. Condensation of spatial signals

There is a question on how many sensors would be needed to sufficiently estimate the vibration profile of a
structure. When linear interpolation functions are used, a rule of thumb is to use about 5-6 nodes per spatial
wavelength in order to obtain reasonably accurate profile estimation, such as to avoid spatial aliasing [25].
These nodes might also include the nodes at the boundaries, which implies that less number of actual sensors
would be required. Furthermore, when higher-order interpolation functions are used in conjunction with
combinations of translational and angular sensors, the number of nodes required per spatial wavelength
would considerably lower. However, the proposed method leads to as many spatial signals as structural
sensors used, possibly leading to the need for a computationally expensive active control system with large
multi-channel control inputs. Obviously in practice, it would be desirable to reduce the number of control
inputs used for active control. The following method allows the condensation of spatial signals so less number
of control inputs can be used.

The number of spatial signals can be reduced by considering the eigenvalue decomposition of QSTstpI

N
QLQ, =) ], (19)
i=1

where N is again the number of sensors used.
The importance of each eigenmode can now be gauged by the size of its corresponding eigenvalue.
Therefore, a condensation of the spatial signal can be obtained by including the more important eigenmodes:

0,0, =Y Juul, (20)

where N,<N, which implies that only the contribution of N, largest eigenvalues are considered in the
calculation of the estimated matrix f!sp. Hence, through the signal condensation, less numerical computation
and less number of control input channels are required for active control purposes.

The summary of the method for obtaining the spatial signal is shown in Fig. 3. The sensor signals are filtered
to produce a spatial signal that can be used in conjunction with an active control algorithm and control

structure structural sensors

spatial signal

A2

Filtering
Condensation Cont'rol
Q Algorithm
'sp

control action via control actuators

Fig. 3. A general approach for sensing and control using spatial signals.
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actuators to control vibration of a structure. Various types of control actuators such as electrodynamic
shakers and piezoelectric patches can be used for control. As with other control methods, for an efficient
control performance, control actuators need to be located at locations where they have a relatively high level
of controllability for vibration modes of interest.

In general, a finite number of discrete sensors are used and control actuators are not collocated
to the sensors, which means that control and observation spillover problem [26,27] may also occur in the
proposed spatial control method. The control spillover may affect the control performance since the
control actuators can excite vibrations at frequencies outside the control bandwidth, which means that the
desired spatial control objective cannot be optimally minimised. The observation spillover can occur
because the discrete sensors used can detect vibrations at frequencies outside the control bandwidth, which
may affect the control performance and even destabilise the control system. Since the sensors are distributed
over the structure and the observability level of each vibration mode varies with locations, the
level of observation spillover will vary for each sensor depending on where the sensor is located. The
spillover problem is particularly important for broadband control and it should not be a real concern for tonal
control. For broadband control, the effect of spillover can be minimised by low-pass filtering the spatial
signals and control input signals to reduce the effect of observing and exciting higher frequency vibration
modes outside the bandwidth of interest.

In addition to the standard spillover problem, the spatial aliasing [25] can be detrimental to the performance
and stability of broadband spatial control. Vibrations at higher frequency modes can be aliased into those at
lower frequency modes because the number of sensors is not sufficient to provide an accurate spatial profile
estimation at higher frequencies. For tonal control, an inaccurate spatial estimation would lead to an
inaccurate spatial objective function that can compromise the control performance and even affect the control
stability. It is thus important to minimise the spatial aliasing by using a sufficient number of sensors for
sensing vibration modes within the control bandwidth. Although sufficient number of discrete sensors are
required, less expensive sensors such as small PVDF patches can also be used for the same control purpose.
Low-pass filtering of spatial and control input signals would also be useful to minimise the spatial aliasing
problem.

3. Optimal spatial control for tonal disturbances

In this section, optimal spatial control for tonal disturbances is considered to demonstrate the proposed
sensing approach for active control. The tonal vibration control case is chosen since it demonstrates clearly the
effect of spatial control approach in modifying the spatial vibration profile of a structure. A feedforward case
is considered in which a reference signal for the disturbance is available.

Suppose there are primary disturbances d at frequency w, that cause structural vibration. Secondary
disturbances are required to spatially control the vibration, in which control signals are denoted by u. Then the
vibration levels v at N multiple sensors attached to the structure can be described by

V(jw,) = Gua(fwo)d(jw,) + G (jo,)ulin,), (21)

where G, represents the transfer matrix from q to p.
The cost function J, as in Eq. (14):

J= (Vsp - VSP)H(Vsp - V(S)p)a (22)

where (F) is the Hermitian transpose of matrix F and (jow,) term has been omitted for the sake of brevity.
From Eq. (15), the spatial signal is

Vsp = Szsvadd + Qsvauus

Vi, = Qg v = QuA'b, (23)
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where

- /R M(x, ) W(x, »)M(x, ) dR,

b= / M(x, ») "W(x, »)f(x, y)dR. (24)
R

Note that the condensed spatial signal based on the estimated f!sp can also be used by replacing €, with Qsp.
Substituting Eq. (23) into Eq. (22) and using a quadratic minimisation approach [12], the optimal control
input uep; can be obtained:

Uopt = —(GZQSTPQSpr)_ GHQT (Qsvadd (25)
Note that the transpose of £, is used instead of its Hermitian transpose since Qsp is a real matrix. Hence, the

optimal control signal depends on the filter matrix €, and the desired spatial vibration profile vg,
The minimum cost function Jo;, is

Tmin = Jo — (@7 GIQL — vINQ, Gy, (26)
where J, is the initial cost function before control given by
Jo = "Gl Q,Gud — 47 GILQL VY — VI QG Gogd + vV (27)

In the following section, the implementation of the proposed sensing and control approach is investigated on a
flexible plate structure.

4. A numerical case study: control of a flexible plate

A simply-supported aluminium plate has been used for this case study since its dynamic behaviour is widely
known. There are N = 25 velocity sensors distributed evenly across the plate with the arrangement of sensors
similar to the one shown in Fig. 4. Point forces are used as disturbance and control sources. The dynamic
model of the plate is obtained using the modal analysis method [28] by taking into account the first 15 modes
of the plate. In this case study, structural control of only up to the first four modes (up to about 400 Hz) is
considered, hence 15 modes of up to 1153.5Hz are deemed to be sufficient for the model of the plate.
Properties of the plate is shown in Table 1, while the resonance frequencies of the first four modes are shown in
Table 2.

plate
< N structural sensors
@ Q
T~ \ m™ element
o > ° /
(M) E
l_....'
y (m)
(m>
q [ J q
& 9

' p

N, nodes at boundaries

Fig. 4. A flexible plate with multiple sensors.
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Table 1

Properties of the plate used in the numerical case study
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Plate x-length 0.500 m

Plate y-length 0.400m

Plate thickness 0.004m

Plate Young’s modulus 7.0 x 10" N/m?

Plate Poisson’s ratio 0.30

Plate density 2750kg/m?

Table 2

Resonance frequencies of the first four modes of the plate

No. Mode Frequency (Hz)
1 (L,1) 98.3
2 2,1 213.4
3 (1,2) 278.2
4 (2,2) 393.3

Linear interpolation functions and rectangular elements are used to estimate the vibration profile of the
plate. For each rectangular element, / = 4 sensors at all four corners are used as the nodes, whose dimension is
A" and hfv'") in x" and y™ directions, respectively. The matrix of interpolation functions Eq. (1) is

r 19T
(m) (m)
hy hy
(m) (m)
)
X y
- x(m) J&
h(m) h(m)
x y
Xm {yom

H(x™, y) = (28)

In this case study, a scalar continuous velocity signal v, is given by v,,(x, y, #) = M(x, y)v from Eq. (3) where
M(x, y) = H(x", y®)A"™ when a particular mth element is of interest.

A scalar spatial weighting function W(x,y)>0 is chosen and €, can be obtained from Eq. (13) with the
associated A" after considering the contributions from all M elements used:

M
T T m)T m 7 "
Qspgsp = m§=l{/le) A (x(m),y(m))H( 7) (x( 1)’y(m)) W(x("),y(m))H( 1) A (1) dR(m)}, (29)

where R represents the region of the mth element.
4.1. Control of spatially weighted vibration of a plate

The first numerical study considers the vibration minimisation of the plate. Point forces are used for a
disturbance source and two control sources whose (x, y) locations are (0.313, 0.121 m) and (0.156, 0.121 m),
(0.278, 0.191 m), respectively. A scalar spatial weighting function W(x, y) >0 is chosen in which some regions
receive larger weights than the others, as shown in Fig. 5. The desired vibration profile is set to f,,(x,y) = 0
since only vibration minimisation is of interest here. Here, a condensed spatial signal is to be used for active
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spatial weighting

Fig. 5. The spatial weighting function, emphasising the region of the plate where vibration reductions are more important.
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Fig. 6. The eigenvalues plot of QSTPQSP for vibration control of the plate. Six largest eigenvalues were used for condensing the size of the
spatial filter.

control of the plate since a full number of spatial signals would require 25 control input channels. To do this,
eigenvalues of QSTstp are obtained as shown in Fig. 6. It was decided to use the six largest eigenvalues to
generate a condensed spatial signal and investigate the performance of active control based on the signal.
After the condensation, only six control inputs would be required.

Now, the control problem is to find a control input that minimise the cost function J in Eq. (22), where the
optimal control u,p; can be obtained from Eq. (25). To demonstrate the control performance in reducing
structural vibration, two vibration modes are chosen, i.e. modes (1,1) and (2,2). A tonal disturbance input is
selected d = sin(2nf'f), where f| = 98.3 Hz is the natural frequency of mode (1,1). The results using a single
control source are shown in Fig. 7 for controlling mode (1,1), where the control inputs for standard control
and spatial control are u = 1.1111 sin(2xf ¢t — 3.142) and u = 1.1112sin(2=f’; ¢t — 3.138), respectively. Figs. 7(b)
and (c) compare the active control performances using standard and spatial control methods, respectively. The
standard control method simply minimises the sum of the squared error signals of all N velocity sensors
distributed over the plate. The results can be compared against the un-controlled vibration profile in Fig. 7(a).
It can be seen that the spatial control method managed to reduce vibration more in the region where the
spatial weighting was larger. Although the control inputs for both standard and spatial control methods are
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Fig. 7. Comparison of standard control and spatial control for vibration mode (1,1) using one control source: (a) no control—spatial
vibration profile of mode (1,1); (b) standard control; (c) spatial control.

close to each other, a slight phase difference allows the spatial control to decrease the vibration level at the
right-hand side region of the plate by increasing the vibration level at the left-hand side region, as compared to
the standard control results. The use of spatial control method can be beneficial when vibrations on certain
regions in the structure are more important than those at other regions.

It is also possible for the standard control method to use a different weight at each error signal to achieve a
particular spatial weighting, which amounts to multiplying the error signals with a diagonal weighting matrix.
However, the number of error signals cannot be reduced, which implies that the controller requires as many
input channels as the number of sensors used. This is a significant advantage for the proposed method since
less complex and more practical controller can be used.

In general, the proposed method can be seen as an extension of the standard control for structural vibration
control which allows continuous spatial weighting to be used. The objective function defined over the structure
also provides a natural expression of structural vibration. As explained in Section 2.2, when a combination of
translational and angular vibration sensors are used, the proposed method allows the sensor signals to be
combined explicitly to obtain the estimation of physical vibration profile, which is less obvious when a
standard method is used.

Similar results can be seen in Fig. 8 for controlling mode (2,2) where the spatial control method achieved
greater vibration reductions at the regions where the spatial weighting was larger. The disturbance input used



D. Halim, B.S. Cazzolato | Journal of Sound and Vibration 296 (2006) 226242 239

o Vi
? 0.02 - I “‘\\
g 0.01 "““\\ _
> o \\\\‘{!"“‘“‘\\\\
R N
l"‘ N,
R

Fig. 8. Comparison of spatial control with one control and two control sources for vibration mode (2,2): (a) no control—spatial vibration
profile of mode (2,2); (b) one control source; (c) two control sources.

is d = sin(2nf4t), where f, = 393.3 Hz, the natural frequency of mode (2,2). The result using a single control
source is shown in Fig. 8(b) with control input u = 0.7655 sin(2znf 4z — 0.0604). Using two control sources as
depicted in Fig. 8(c), the control inputs are u; = 0.7579 sin(2zf 4t — 0.0409) and u, = 0.1353 sin(2xf ,¢ — 3.085),
respectively. The results also show how the number of control sources (I and 2 control sources)
affects the vibration profile of the controlled plate. As expected, better vibration results are obtained with
more control sources where the second control input u, allows a greater flexibility in modifying the plate’s
vibration profile.

4.2. Control of vibration profile of a plate

The following numerical study demonstrates the proposed method’s ability in modifying the spatial profile
of structural vibration. A tonal case is again considered here, which implies modifying the desired spatial
vibration profile at a particular frequency w,. When a resonance frequency is chosen, the controller attempts
to modify the plate’s vibration mode shape to be as close as possible to the desired spatial vibration profile
S (%, ») (see Fig. 9). The spatial weighting W(x,y) is chosen to be unity which means that all regions are
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Fig. 10. The eigenvalues plot of QsTstp for vibration profiling of the plate. Five largest eigenvalues were used for condensation of the
spatial filter.

weighted uniformly. The eigenvalues of QsTstp were analysed (see Fig. 10) and the five largest eigenvalues
were used so only five control inputs are generated from the spatial filtering.

Point forces are used for a disturbance source and up to five control sources whose locations are (0.313,
0.222m) and (0.156, 0.121m), (0.278, 0.191m), (0.142, 0.125m), (0.385, 0.328m), (0.208, 0.296m),
respectively. The first 3 control sources are used for the first numerical study; and five control sources for
the next one. The results for controlling mode (1,1) are shown in Fig. 11. Here, results for three and five
control sources are compared, which show that five control sources provide a better vibration profile.
Fig. 11(c) shows the spatial error plot for five control sources where the average error over the entire
plate is approximately 4%. It was found that more control sources are required to modify the vibration mode
shape more accurately, which also depends on the complexity of the desired vibration profile used.

5. Conclusions

A multiple-sensor method for active vibration control of an arbitrary structure has been proposed. This
method allows one to spatially control a structure whose dynamic model is not available. The use of spatial
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Fig. 11. Comparison of three control and five control sources for modifying the spatial vibration profile of vibration mode (1,1): (a) three
control sources; (b) five control sources; (c) spatial error plot for five control sources.

signals are introduced whose signals represent a spatially weighted vibration profile of the structure to be
controlled. A case study on a flexible plate demonstrated that the proposed method are capable of controlling
structural vibration, either for vibration minimisation or vibration profile modification. One of many
applications of such a control method might be the profiling of vibration on flat panel speakers.
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